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Abstract. A class of shape-invariant bound-state problems which represent two-level systems
are introduced. It is shown that the coupled-channel Hamiltonians obtained correspond to the
generalization of the Jaynes–Cummings Hamiltonian.

1. Introduction

Supersymmetric quantum mechanics ([1], for a recent review see [2]) deals with pairs of
Hamiltonians which have the same energy spectra, but different eigenstates. A number of such
pairs of Hamiltonians share an integrability condition called shape invariance [3]. Although
not all exactly solvable problems are shape invariant [4], shape invariance, especially in its
algebraic formulation [5–7], is a powerful technique to study exactly solvable systems.

Supersymmetric quantum mechanics is generally studied in the context of one-dimensional
systems. The partner Hamiltonians

Ĥ1 = Â†Â (1.1a)

Ĥ2 = ÂÂ† (1.1b)

are most readily written in terms of one-dimensional operators

Â ≡ W(x) +
i√
2m

p̂ (1.2a)

Â† ≡ W(x) − i√
2m

p̂ (1.2b)

whereW(x) is the superpotential. Attempts were made to generalize supersymmetric quantum
mechanics and the concept of shape invariance beyond one-dimensional and spherically
symmetric three-dimensional problems. These include non-central [8], non-local [9] and
periodic [10] potentials; a three-body problem in one dimension [11] with a three-body
force [12]; N -body problem [13]; and coupled-channel problems [14, 15]. It is not easy
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to find exact solutions to these problems. For example, in the coupled-channel case a general
shape invariance is only possible in the limit where the superpotential is separable [15] which
corresponds to the well known sudden approximation in the coupled-channel problem [16].
Our goal in this paper is to introduce a class of shape-invariant coupled-channel problems
which correspond to the generalization of the Jaynes–Cummings Hamiltonian [17].

2. Shape invariance

The Hamiltonian Ĥ1 of equation (1.1) is called shape invariant if the condition

Â(a1)Â
†(a1) = Â†(a2)Â(a2) + R(a1) (2.1)

is satisfied [3]. In this equation a1 and a2 represent parameters of the Hamiltonian. The
parameter a2 is a function of a1 and the remainder R(a1) is independent of the dynamical
variables such as position and momentum. As written the condition of equation (2.1) does not
require the Hamiltonian to be one dimensional, and one does not need to choose the ansatz
of equation (1.2). In the cases studied so far the parameters a1 and a2 are either related by a
translation [4, 18] or a scaling [19]. Introducing the similarity transformation that replaces a1

with a2 in a given operator

ˆT (a1)Ô(a1)T̂
†(a1) = Ô(a2) (2.2)

and the operators

B̂+ = Â†(a1)T̂ (a1) (2.3)

B̂− = B̂†
+ = T̂ †(a1)Â(a1) (2.4)

the Hamiltonians of equation (1.1) take the forms

Ĥ1 = B̂+B̂− (2.5)

and

Ĥ2 = T̂ B̂−B̂+T̂
†. (2.6)

Using equation (2.1) one can also easily prove the commutation relation [5]

[B̂−, B̂+] = T̂ †(a1)R(a1)T̂ (a1) ≡ R(a0) (2.7)

where we have used the identity

R(an) = T̂ (a1)R(an−1)T̂
†(a1) (2.8)

valid for any n. The ground state of the Hamiltonian Ĥ1 satisfies the condition

Â|ψ0〉 = 0 = B̂−|ψ0〉. (2.9)

The nth excited state of Ĥ1 is given by

|ψn〉 ∼ (B̂+)
n|ψ0〉 (2.10)

with the eigenvalue

εn =
n∑

k=1

R(ak). (2.11)

Note that the eigenstate of equation (2.10) needs to be suitably normalized. We discuss the
normalization of this state in the next section.
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3. Generalization of the Jaynes–Cummings Hamiltonian

To generalize the Jaynes–Cummings Hamiltonian to general shape-invariant systems we
introduce the operator

Ŝ = σ+Â + σ−Â† (3.1)

where

σ± = 1
2 (σ1 ± iσ2) (3.2)

with σi , i = 1, 2 and 3, being the Pauli matrices and the operators Â and Â† satisfy the
shape-invariance condition of equation (2.1). We search for the eigenstates of Ŝ. It is more
convenient to work with the square of this operator, which can be written as

Ŝ2 =
[
T̂ 0
0 ±1

] [
B̂−B̂+ 0

0 B̂+B̂−

] [
T̂ † 0
0 ±1

]
. (3.3)

Note the freedom of choice of the sign in this equation, which results in two possible
decompositions of Ŝ2.

We next introduce the states

|�〉± =
[
T̂ 0
0 ±1

] [ |m〉
|n〉

]
(3.4)

where |m〉 and |n〉 are the abbreviated notation for the states |ψn〉 and |ψm〉 of equation (2.10).
Using equations (2.7), (3.3) and (3.4) and the fact that the operator T̂ is unitary one obtains

Ŝ2|�〉± =
[
T̂ 0
0 ±1

] [
B̂+B̂− + R(a0) 0

0 B̂+B̂−

] [ |m〉
|n〉

]

=
[
T̂ 0
0 ±1

] [
εm + R(a0) 0

0 εn

] [ |m〉
|n〉

]
. (3.5)

Using equations (2.8) and (2.11) one can write

T̂ [εm + R(a0)] T̂
† = T̂ [R(a1) + R(a2) + · · · + R(am) + R(a0)] T̂

†

= R(a2) + R(a3) + · · · + R(am+1) + R(a1) = εm+1. (3.6)

Hence the states

|�m〉± = 1√
2

[
T̂ 0
0 ±1

] [ |m〉
|m + 1〉

]
m = 0, 1, 2, . . . (3.7)

are the normalized eigenstates of the operator Ŝ2

Ŝ2|�m〉± = εm+1|�m〉±. (3.8)

One can also calculate the action of the operator Ŝ on this state

Ŝ|�m〉± = 1√
2

[ ±T̂ B̂−|m + 1〉
B̂+|m〉

]
. (3.9)

Introducing the operator [7]

Q̂† = (B̂+B̂−)−1/2B̂+ (3.10)

one can write the normalized eigenstate of Ĥ1 as

|m〉 = (Q̂†)m|0〉. (3.11)
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Using equations (3.10) and (3.11) one obtains

B̂+|m〉 = √
εm+1|m + 1〉. (3.12)

Similarly,

T̂ B̂−|m + 1〉 = T̂ B̂−
1√
B̂+B̂−

B̂+|m〉

= T̂

√
B̂−B̂+|m〉

= T̂
√
εm + R(a0)|m〉

= √
εm+1T̂ |m〉. (3.13)

Using equations (3.12) and (3.13), equation (3.9) takes the form

Ŝ|�m〉± = 1√
2

√
εm+1

[ ±T̂ |m〉
|m + 1〉

]

= ±√
εm+1|�m〉±. (3.14)

Equations (3.8) and (3.14) indicate that the Hamiltonian

Ĥ = Ŝ2 +
√
h̄�Ŝ (3.15)

where � is a constant, has the eigenstates |�m〉±
Ĥ |�m〉± = (εm+1 ±

√
h̄�

√
εm+1)|�m〉± (3.16)

with the exception of the ground state. It is easy to show that the ground state is

|�0〉 =
[

0
|0〉

]
(3.17)

with eigenvalue 0. To emphasize the structure of equation (3.16) as the generalized Jaynes–
Cummings Hamiltonian we rewrite it as

Ĥ = Â†Â + 1
2 [Â, Â†](σ3 + 1) +

√
h̄�(σ+Â + σ−Â†). (3.18)

This Hamiltonian represents a number of systems. When Â describes the annihilation operator
for the harmonic oscillator, [Â, Â†] = h̄ω, where ω is the oscillator frequency. In this case
equation (3.18) reduces to the standard Jaynes–Cummings Hamiltonian. When Â†Â describes
the Morse–Hamiltonian, equation (3.18) takes the form

Ĥ = p̂2

2M
+ V0

(
e−2λx − 2e−λx

)
+

√
V0

h̄λ√
2M

(σ3 + 1) e−λx

+
√
h̄�V0

[
σ1

(
1 − h̄λ

2
√

2MV0
− e−λx

)
− σ2

p̂√
2MV0

]
(3.19)

with the energy eigenvalues

Em =
√
V0

h̄λ√
2M

(m + 1)

[
2 − h̄λ√

2MV0
(m + 2)

]

±
{
h̄�

√
V0

h̄λ√
2M

(m + 1)

[
2 − h̄λ√

2MV0
(m + 2)

]}1/2

. (3.20)

Both the harmonic oscillator and Morse potential are shape-invariant potentials where
parameters are related by a translation. It is also straightforward to use those shape-invariant
potentials where the parameters are related by a scaling [19] in writing down equation (3.18).
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4. Conclusions

In this paper we have introduced a class of shape-invariant bound-state problems which
represent two-level systems. The corresponding coupled-channel Hamiltonians generalize
the Jaynes–Cummings Hamiltonian. If we take Ĥ1 to be the simplest shape-invariant system,
namely the harmonic oscillator, our Hamiltonian, equation (3.18), reduces to the standard
Jaynes–Cummings Hamiltonian, which has been used extensively to model a single field mode
on resonance with atomic transitions. For a general shape-invariant system equation (3.18)
represents a non-trivial coupled-channels problem which may find applications in molecular,
atomic or nuclear physics.

In this paper we only addressed generalization of the Jaynes–Cummings model to other
shape-invariant bound-state systems. Supersymmetric quantum mechanics has been applied to
alpha particle [20] and Coulomb [21] scattering problems. More recently shape invariance was
utilized to calculate quantum tunnelling probabilities [22]. It may be possible to generalize
our results to such continuum problems. Such an investigation will be deferred to a later
publication.
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